Exercise 53

Use the Intermediate Value Theorem to show that there is a root of the given equation in the specified interval.

$$
x^{4}+x-3=0, \quad(1,2)
$$

Solution

Let $f(x)=x^{4}+x-3$. This is a polynomial function, which is continuous according to Theorem 7 .

$$
f(x)=0, \quad(1,2)
$$

Find a value of x in the interval $[1,2]$ so that $f(x)$ is negative, and find a value of x in the interval $[1,2]$ so that $f(x)$ is positive.

$$
\begin{aligned}
& f(1)=-1 \\
& f(2)=15
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1, 2], and $N=0$ lies between $f(1)$ and $f(2)$. By the Intermediate Value Theorem, then, there exists a number c such that $f(c)=0$.

